
Advanced AmigaDOS Routines

Advanced AmigaDOS Routines ii

COLLABORATORS

TITLE :

Advanced AmigaDOS Routines

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Advanced AmigaDOS Routines iii

Contents

1 Advanced AmigaDOS Routines 1

1.1 Chapter 7 - Advanced AmigaDOS Routines . 1

1.2 Introduction . 1

1.3 Get Information about Files and Directories . 1

1.4 Lock the Object . 2

1.5 Create a File Info Block . 3

1.6 Old Dos Versions (WB1.3 or WB1.2) . 3

1.7 New Release 2 (WB2.04) or Higher . 3

1.8 Call Examine() . 4

1.9 Examine the File Info Block . 4

1.10 Clean Up . 6

1.11 Examine Files/Subdirectories in a Directory/Device . 6

1.12 Get Information About a Disk . 7

1.13 Create the InfoData Structure . 7

1.14 Lock the Disk . 8

1.15 Call the Info() Function . 8

1.16 InfoData Structure . 8

1.17 The Internal Assign, Volume and Device List . 10

1.18 To Be Continued... 13

1.19 Examples . 13

Advanced AmigaDOS Routines 1 / 15

Chapter 1

Advanced AmigaDOS Routines

1.1 Chapter 7 - Advanced AmigaDOS Routines

Previous Chapter: Next Chapter:
6. Handlers

CHAPTER 7 - ADVANCED AMIGADOS ROUTINES

Introduction

Get Information About Files and Directories

Examine Files/Subdirectories in a Directory/Device

Get Information About a Disk

The Internal Assign, Volume and Device List

To Be Continued...

Examples

1.2 Introduction

INTRODUCTION

In this chapter I will describe some advanced routines in
AmigaDOS. Although this chapter is mainly intended for
experienced programmers I have tried to make it as easy as
possible to read even if you are new C programmer and have
not worked so much with AmigaDOS.

1.3 Get Information about Files and Directories

Advanced AmigaDOS Routines 2 / 15

GET INFORMATION ABOUT FILES AND DIRECTORIES

In some occations you might need to get some information about
a file or directory. You might want to see which protection
bits are currently set, how big the it is, on what date it was
created, what comment is attached and so on... To get this type
of information you should use the Examine()

Examine() allows you to examine files, directories and volumes.
In the following sections I will now and then refer to all of
these types as "objects".

There are two things you have to do before you can call
Examine():

1. You must lock the object you want to examine. Simply use
the Lock() function as previously explained:

Lock the Object
2. Create a FileInfoBlock structure. The problem with this

structure is that it is used by AmigaDOS directly and must
therefore be long word aligned! (Since you have to create
the structure you must make sure that it is long word
aligned. Structures that are created by AmigaDOS itself
will always be long word aligned.)

Create a File Info Block
You can now call Examine() and check the file/directory:

Call Examine()

Examine the File Info Block

Clean Up

1.4 Lock the Object

LOCK THE OBJECT

First you have to lock the object you want to examine with help
of the Lock()
(read some values) it is enough with a shared lock ("read
lock").

Here is an example:

/* A "BCPL" pointer to our lock: */
BPTR my_lock;

- - -

Advanced AmigaDOS Routines 3 / 15

/* Try to lock the object we later will examine: */
my_lock = Lock("RAM:Highscore.dat", SHARED_LOCK);

/* Check if we have successfully locked the object or not: */
if(my_lock == NULL)

printf("Could not lock the object!\n");

1.5 Create a File Info Block

CREATE A FILE INFO BLOCK

Before we can call Examine()
FileInfoBlock structure. This structure must, as already
explained, be long word aligned ("a present from the wonderful
BCPL language"). How we should create this structure depends
on if your program should be compatible with the old dos
libraries (WB1.2 and WB1.3) or not.

Old Dos Versions (WB1.3 or WB1.2)

New Release 2 (WB2.04) or Higher

1.6 Old Dos Versions (WB1.3 or WB1.2)

OLD DOS VERSIONS (WB1.3 OR WB1.2)

If your program should be able to run on the old systems (dos
libraries older than V37) you should allocate the
FileInfoStructure with help of the AllocMem() function.

Here is an example:

/* Declare a pointer to a FileInfoBlock structure: */
struct FileInfoBlock *my_fib_ptr;

- - -

/* Allocate enough memory for a FileInfoBlock structure: */
/* (OK! This memory will be long word aligned.) */
my_fib_ptr = (struct FileInfoBlock *)

AllocMem(sizeof(struct FileInfoBlock), MEMF_ANY | MEMF_CLEAR);

/* Check if we have allocated the memory successfully: */
if(my_fib_ptr == NULL)

printf("Could not allocate enough memory!\n");

1.7 New Release 2 (WB2.04) or Higher

Advanced AmigaDOS Routines 4 / 15

NEW RELEASE 2 (WB2.04) OR HIGHER

If your program only should be used on systems with dos library
V37 or higher (WB2.04 or higher) you should use the new
AllocDosObject()

Here is a simple example:

/* Declare a pointer to our FileInfoBlock */
/* which we will allocate: */
struct FileInfoBlock *my_fib;

- - -

/* Create a FileInfoBlock structure with help */
/* of the new AllocDosObject() function: */
my_fib = AllocDosObject(DOS_FIB, NULL);

/* Check if we have allocated the memory successfully: */
if(!my_fib)

printf("Could not allocate the FileInfoBlock!\n");

1.8 Call Examine()

CALL EXAMINE()

Once you have locked the object you want to examine and you
have allocated a FileInfoBlock structure you may call the
Examine()

1.9 Examine the File Info Block

EXAMINE THE FILE INFO BLOCK

If you have successfully examined the object you may look at
the different fields in the FileInfoBlock structure. The
structure is defined in header file "dos/dos.h" like this:

struct FileInfoBlock
{

LONG fib_DiskKey;
LONG fib_DirEntryType;
char fib_FileName[108];
LONG fib_Protection;
LONG fib_EntryType;
LONG fib_Size;
LONG fib_NumBlocks;
struct DateStamp fib_Date;
char fib_Comment[80];

Advanced AmigaDOS Routines 5 / 15

char fib_Reserved[36];
};

fib_DiskKey: Key number for the disk. Usually of no
interest for us.

fib_DirEntryType: If the number is smaller than zero it is a
file. On the other hand, if the number is
larger than zero it is a directory (or volume
or device).

/* Is it a file or directory (etc)? */
if(my_fib->fib_DirEntryType < 0)

printf("File\n");
else

printf("Directory or Volume\n");

fib_FileName: Null terminated string containing the file-
name. (File names may not be longer than 30
characters.)

fib_Protection: Field containing the protection flags:
(if set)

FIBF_DELETE : the file/directory can not be
deleted.

FIBF_EXECUTE : the file can not be executed.
FIBF_WRITE : you can not write to the file.
FIBF_READ : you can not read the file.
FIBF_ARCHIVE : Archive bit.
FIBF_PURE : Pure bit.
FIBF_SCRIPT : Script bit.

/* Is the object protected: */
if(my_fib->fib_Protection & FIBF_DELETE)

printf("Protected!");
else

printf("Not protected!");

fib_EntryType: File/Directory entry type number. Usually of no
interest for us.

fib_Size: Size of the file (in bytes).

fib_NumBlocks: Number of blocks in the file.

fib_Date: Structure containing the date when the file
was latest updated/created. See below for
more information.

fib_Comment: Null terminated string containing a comment.
(Max 80 characters including the NULL sign.)

fib_Reserved: This field is for the moment reserved, and may
therefore not be used.

Advanced AmigaDOS Routines 6 / 15

The DateStamp structure which is a part of the FileInfoBlock
structure is also defined in header file "dos/dos.h", and looks
like this:

struct DateStamp
{

LONG ds_Days;
LONG ds_Minute;
LONG ds_Tick;

};

ds_Days: Number of days since 01-Jan-1978.

ds_Minute: Number of minutes past midnight.

ds_Tick: Number of ticks past the last minute. There are 50
ticks / second. (50 * 60 = 3000 ticks / minute.)

See the examples for a complete list of how to examine the
FileInfoBlock structure.

1.10 Clean Up

CLEAN UP

Once you have examined the FileInfoBlock structure and do not
want to use it any more you should deallocate it. If you
allocated it with help of AllocMem() you must free it with help
of FreeMem():

/* Deallocate the memory when we do not need it any more: */
FreeMem(my_fib_ptr, sizeof(struct FileInfoBlock));

However, if you allocated the structure with help of the new
AllocDosObject() function you have to use the FreeDosObject()
function to deallocate the structure.

You must of course also unlock the object when you do not need
it any more. Simply use the UnLock()

/* Unlock the object: */
UnLock(my_lock);

1.11 Examine Files/Subdirectories in a Directory/Device

EXAMINE FILES/SUBDIRECTORIES IN A DIRECTORY/DEVICE

A directory, volume or device (I will refer to them all as
"directories") can contain several files as well as several
(sub)directories. If you want to examine all objects in a

Advanced AmigaDOS Routines 7 / 15

directory you should first use the Examine()
examine the directory.

If you discover that the current object is a directory you
can use a function called ExNext()
the objects in the directory. The first time you call ExNext()
you will get information about the first object in the
directory. You can then call ExNext() again to get information
about the next object and so on until there are no more objects
left to examine and the ExNext() function fails.

It it important to remember that ExNext() can only be called
after you first have successfully called Examine(), and you
must use the same FileInfoBlock structure each time.

1.12 Get Information About a Disk

GET INFORMATION ABOUT A DISK

To get information about a disk you must first create an
"InfoData" structure in which all information will be stored.
As you probably already have guessed this structure must be
long word aligned. Once you have created the structure you
should lock the disk you want to examine and finally you can
check it:

1. Create the InfoData Structure

2. Lock the Disk

3. Call the Info() Function

4. InfoData Structure

1.13 Create the InfoData Structure

CREATE THE INFODATA STRUCTURE

Since the
InfoData structure
has to be long word aligned you

have to use AllocMem() to create it. (AllocDosObject()
support this type of object.)

Here is an example:

/* Declare a pointer to our */
/* info data block: */
struct InfoData *my_info_data;

- - -

Advanced AmigaDOS Routines 8 / 15

/* Allocate memory for an InfoData structure: */
my_info_data = (struct InfoData *)

AllocMem(sizeof(struct InfoData), MEMF_ANY);

/* Have we successfully allocated the memory? */
if(!my_info_data)

printf("Could not allocate enough memory!\n");

1.14 Lock the Disk

LOCK THE DISK

Once you have created an
InfoData structure
you should lock

the disk you want to examine with the help of the Lock()
function. (Of course the order does not matter and you could
equally well have first locked the disk and then allocated the
InfoData structure.) Since we will only look at the disk it is
enough with a shared lock.

Here is an example:

/* A "BCPL" pointer to our lock: */
BPTR my_lock;

- - -

/* Lock the disk (in this case "df0:"): */
my_lock = Lock("df0:", SHARED_LOCK);

/* Have we successfully locked the disk? */
if(!my_lock)

printf("Could not lock the disk!\n");

1.15 Call the Info() Function

CALL THE INFO() FUNCTION

At last we can call the Info()

1.16 InfoData Structure

INFODATA STRUCTURE

If you have successfully called the Info()
start to examine the fields in the InfoData structure which has
now been initialized. The InfoData structure is defined in
header file "dos/dos.h" like this:

Advanced AmigaDOS Routines 9 / 15

struct InfoData
{

LONG id_NumSoftErrors;
LONG id_UnitNumber;
LONG id_DiskState;
LONG id_NumBlocks;
LONG id_NumBlocksUsed;
LONG id_BytesPerBlock;
LONG id_DiskType;
BPTR id_VolumeNode;
LONG id_InUse;

};

id_NumSoftErrors: Number of soft errors on the disk. (Number
of damaged areas.)

id_UnitNumber: In which unit the disk is in. (Note that it
might have been removed after you have called
the Info().)

id_DiskState: The disk can have one of the following three
different states:

ID_VALIDATING The disk has just been
inserted and AmigaDOS is
trying to see what type of
disk it really is. (This
flag can also be set if
the disk is damaged, or
there are internal problems
in the filing system.)

The disk can for the
moment not be used when
it is in this state.

ID_VALIDATED The disk has been
validated, and the disk
is NOT write protected.

ID_WRITE_PROTECTED The disk has been
validated, and the disk
is write protected.

id_NumBlocks: Number of blocks on the disk.

id_NumBlocksUsed: Number of blocks used.

id_BytesPerBlock: Size (in bytes) of each block.

id_DiskType: There exist several different types of disks:

ID_NO_DISK_PRESENT No disk in the drive.
(Interesting type of disk.)

ID_UNREADABLE_DISK The disk contains corrupted

Advanced AmigaDOS Routines 10 / 15

data and can not be used.

ID_DOS_DISK It is a normal disk.

ID_FFS_DISK The disk is using the
"Fast Filing System" (FFS)

ID_INTER_DOS_DISK It is a normal int. disk.

ID_INTER_FFS_DISK The int. disk is using the
"Fast Filing System" (FFS)

ID_NOT_REALLY_DOS Not a dos (normal) disk.

ID_KICKSTART_DISK It is a "Kickstart" disk.
Special type of disk used
on A1000 to load the
system which is on the
other Amiga models included
in the Kickstart ROMs.

ID_MSDOS_DISK It is an (IBM) MS dos
disk. (The special program
"CrossDos" which is
included with WB 2.1 allows
the user to also work with
MS dos disks - 720 kB.)

id_VolumeNode: Pointer to the volume node list which is
rarely used.

id_InUse: If this field is non zero ths disk is in use.
(Since you must have locked the disk before
you could examine it, this field will always
be non zero since at least your program is
using the disk.)

1.17 The Internal Assign, Volume and Device List

THE INTERNAL ASSIGN, VOLUME AND DEVICE LIST

AmigaDOS has a list of all Assigns, Volumes and Devices it
currently knows about. Whenever a disk is inserted or removed,
a new assign is added etc... this list is automatically
updated.

As a programmer you migh need to know which assigns, volumes or
devices are currently available. A file requester should for
example be able to display this list so the user can directly
select the device, assign or volume he/she wants to go to.

If you want to get the names of all objects AmigaDOS currently
knows about, and you want your program to be compatible with
all dos library versions, you have to go deep down into the
system. However, as long as you know what you are doing (or

Advanced AmigaDOS Routines 11 / 15

follows my steps carefully) there is danger and we are not
breaking any "programming laws" by doing this.

This is what you have to do:

1. Get a pointer to the dos library. We simply declare the
global dos library pointer as external, and it will
automatically be initialized for us as explained earlier.

/* Declare an external global library */
/* pointer to the Dos library: */
extern struct DosLibrary *DOSBase;

2. In the DosLibrary structure you will find a pointer to
a "RootNode" structure. This strucure contains some
fundamental parts of AmigaDOS but shold not be used
unless you really know what you are dowing.

/* Declare a pointer to the RootNode structure: */
struct RootNode *rootnode_ptr;

- - -

/* Get a pointer to the RootNode structure: */
rootnode_ptr = DOSBase->dl_Root;

3. In the RootNode structure we can find a BCPL pointer to
a DosInfo structure.

/* Declare a temporary BCPL pointer used */
/* to convert BPTRs into C pointer with: */
BPTR temp_bptr;

- - -

/* Get a BCPL pointer (BPTR) to */
/* the DosInfo structure: */
temp_bptr = rootnode_ptr->rn_Info;

4. Since you got a BPTR (a BCPL pointer) you must convert it
into a normal C pointer before you can use it. (BCPL
pointers are four times "smaller" than normal C pointers
and it must therefore be multiplied by 4, which is done
with help of the BADDR() macro.)

/* Declare a pointer to a DosInfo structure: */
struct DosInfo *dos_info_ptr;

- - -

/* Convert the BCPL pointer into a normal C pointer: */
dos_info_ptr = (struct DosInfo *) BADDR(temp_bptr);

Advanced AmigaDOS Routines 12 / 15

5. It is in this DosInfo structure you will find a linked
list of "DosList" nodes. In each DosList node you will
find the name of one device, assign or volume. However,
before you may scan the linked list you have to "lock" it
so it does not change while you are reading it. If the
user inserts or removes a disk for example the list will
be rebuilt and nodes may be added or taken away, and this
must of course not happen while you are in the middle of
the linked list!

On the older dos libraries, prior to V36, there does not
exist any function to directly lock the list. Instead you
have to use the system function "Forbid()" which will turn
off some parts of the multitasking. (Note that while you
are in this "forbidden" mode you may not use any Wait()
calls, and you should as quickly as possible return to
normal state.)

/* Turn off parts of the multitasking: */
Forbid();

6. You can now scan the list of "DosList" nodes. Each DosList
node (structure) has a pointer to the next node. In the
last node this pointer is pointing NULL. (Note that while
you are examining the nodes you have to convert a lot
of BCPL pointers into normal C pointers.)

/* Decalre pointer to the first DosList structure: */
struct DosList *first_doslist_node;

/* Decalre a pointer to the current (the one */
/* we are working with) DosList structure: */
struct DosList *doslist_node;

- - -

/* Get a BCPL pointer (BPTR) to the */
/* first "DosList" node: */
temp_bptr = dos_info_ptr->di_DevInfo;

/* Convert the BPTR into a C pointer: */
first_doslist_node = (struct DosList *)

BADDR(temp_bptr);

/* Start with the first node: */
doslist_node = first_doslist_node;

/* Stay in the loop until all */
/* nodes have been checked: */
while(doslist_node)
{

- - -

/* Examine the node... */

Advanced AmigaDOS Routines 13 / 15

- - -

/* Go to next node: */

/* Get a BPTR to the next node: */
temp_bptr = doslist_node->dol_Next;

/* Convert the BPTR into a C pointer: */
doslist_node = (struct DosList *)

BADDR(temp_bptr);
}

7. When all nodes have been examined you should as quickly as
possible turn on the multitasking by calling the "Permit()"
function.

/* Turn the multitaskin ON again: */
Permit();

easy as pie...

1.18 To Be Continued...

TO BE CONTINUED...

There are of course a lot of other advanced and interesting
things you can do with AmigaDOS, but that will be added in
coming updates... Remember to pay the registration fee so you
do not miss future updates!

TO BE CONTINUED....(!)

1.19 Examples

EXAMPLES

Example 1: Read! Run! Edit!
This example demonstrates how to use the Examine() function.
The program needs a file, directory or volume name as the
only argument and it will print some interesting information
about given the object.

This example can be used with all versions of the dos
library.

Example 2: Read! Run! Edit!
This example does exactly the same thing as the previous one,
it simply demonstrates how to use the Examine() function.
However, this example uses the new AllocDosObject() and
FreeDosObject() functions which were introduced in Release 2.
You should use these new functions (if possible) instead of

Advanced AmigaDOS Routines 14 / 15

using the older method of allocating a fixed amount of memory
for the dos object (the FileInfoBlock structure).

This example can only be used with dos library V37 or higher.

Example 3: Read! Run! Edit!
This example demonstrates how to examine all objects in
directory or volume. The program needs a directory or
volume name as the only argument and it will then list
all files and directories (subdirectories) in that
directory or volume. This is a good example on how to
use the Examine() and ExNext() functions.

This example can be used with all versions of the dos
library.

Example 4: Read! Run! Edit!
This program will examina all objects in a directory/device.
The files will be listed, and if finds a directory it will
with help of a recursive function examine all objects in
that directory also and so on... Good example on how to use
the Examine() and ExNext() functions in a recursive program.

This example can be used with all versions of the dos
library.

Example 5: Read! Run! Edit!
This example demonstrates how to use the Info() function
to get some information about a disk. We will, among many
things, check if the disk is write protected or not, what
type of disk it is etc... In this example we examine the
disk in "df0:".

This example can be used with all versions of the dos
library.

Example 6: Read! Run! Edit!
This example will examine some of the "lowest" parts in
AmigaDOS. It will look up and print all Assigns, Volumes
and Devices AmigaDOS knows about. Please note that we
will dig fairly deep down into the system, and only
experienced programmers are recommended to do this. I
have added a lot of comments to help you, and if you cut
out parts of this example carefully you should be able
to use it in your own programs.

This example can be used with all versions of the dos
library.

Example 7: Read! Run! Edit!
This example will as the previous one examine the special
lists of available Assigns, Volumes and Devices. This
example will however add the volume name to the device
in which the volume is. We will also only print the
devices (with their volume name) which are currently
available to access. We will for example not print the
device "df0:" if there is not a disk in that drive.

Advanced AmigaDOS Routines 15 / 15

However, if there is a disk in the drive we will both
print the device name and the name of the volume which is
in that device. We will therefore get a list which is
identical to the one used by the ASL file requeter.

	Advanced AmigaDOS Routines
	Chapter 7 - Advanced AmigaDOS Routines
	Introduction
	Get Information about Files and Directories
	Lock the Object
	Create a File Info Block
	Old Dos Versions (WB1.3 or WB1.2)
	New Release 2 (WB2.04) or Higher
	Call Examine()
	Examine the File Info Block
	Clean Up
	Examine Files/Subdirectories in a Directory/Device
	Get Information About a Disk
	Create the InfoData Structure
	Lock the Disk
	Call the Info() Function
	InfoData Structure
	The Internal Assign, Volume and Device List
	To Be Continued...
	Examples

